Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.

Identifieur interne : 002743 ( Main/Exploration ); précédent : 002742; suivant : 002744

De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.

Auteurs : Dipto Bhattacharyya ; Ragini Sinha ; Saptarshi Hazra ; Riddhi Datta ; Sharmila Chattopadhyay [Inde]

Source :

RBID : pubmed:24182234

Descripteurs français

English descriptors

Abstract

BACKGROUND

The Himalayan or Indian Mayapple (Podophyllum hexandrum Royle) produces podophyllotoxin, which is used in the production of semisynthetic anticancer drugs. High throughput transcriptome sequences or genomic sequence data from the Indian Mayapple are essential for further understanding of the podophyllotoxin biosynthetic pathway.

RESULTS

454 pyrosequencing of a P. hexandrum cell culture normalized cDNA library generated 2,667,207 raw reads and 1,503,232 high quality reads, with an average read length of 138 bp. The denovo assembly was performed by Newbler using default and optimized parameters. The optimized parameter generated 40, 380 assembled sequences, comprising 12,940 contigs and 27,440 singlets which resulted in better assembly as compared to default parameters. BLASTX analysis resulted in the annotation of 40,380 contigs/singlet using a cut-off value of ≤ 1E-03. High similarity to Medicago truncatula using optimized parameters and to Populus trichocarpa using default parameters was noted. The Kyoto encyclopedia of genes and genomes (KEGG) analysis using KEGG Automatic Annotation Server (KAAS) combined with domain analysis of the assembled transcripts revealed putative members of secondary metabolism pathways that may be involved in podophyllotoxin biosynthesis. A proposed schematic pathway for phenylpropanoids and podophyllotoxin biosynthesis was generated. Expression profiling was carried out based on fragments per kilobase of exon per million fragments (FPKM). 1036 simple sequence repeats were predicted in the P. hexandrum sequences. Sixty-nine transcripts were mapped to 99 mature and precursor microRNAs from the plant microRNA database. Around 961 transcripts containing transcription factor domains were noted. High performance liquid chromatography analysis showed the peak accumulation of podophyllotoxin in 12-day cell suspension cultures. A comparative qRT-PCR analysis of phenylpropanoid pathway genes identified in the present data was performed to analyze their expression patterns in 12-day cell culture, callus and rhizome.

CONCLUSIONS

The present data will help the identification of the potential genes and transcription factors involved in podophyllotoxin biosynthesis in P. hexandrum. The assembled transcripts could serve as potential candidates for marker discovery and conservation, which should form the foundations for future endeavors.


DOI: 10.1186/1471-2164-14-748
PubMed: 24182234
PubMed Central: PMC3840631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.</title>
<author>
<name sortKey="Bhattacharyya, Dipto" sort="Bhattacharyya, Dipto" uniqKey="Bhattacharyya D" first="Dipto" last="Bhattacharyya">Dipto Bhattacharyya</name>
</author>
<author>
<name sortKey="Sinha, Ragini" sort="Sinha, Ragini" uniqKey="Sinha R" first="Ragini" last="Sinha">Ragini Sinha</name>
</author>
<author>
<name sortKey="Hazra, Saptarshi" sort="Hazra, Saptarshi" uniqKey="Hazra S" first="Saptarshi" last="Hazra">Saptarshi Hazra</name>
</author>
<author>
<name sortKey="Datta, Riddhi" sort="Datta, Riddhi" uniqKey="Datta R" first="Riddhi" last="Datta">Riddhi Datta</name>
</author>
<author>
<name sortKey="Chattopadhyay, Sharmila" sort="Chattopadhyay, Sharmila" uniqKey="Chattopadhyay S" first="Sharmila" last="Chattopadhyay">Sharmila Chattopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032, India. sharmila@iicb.res.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032</wicri:regionArea>
<wicri:noRegion>Kolkata 700032</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24182234</idno>
<idno type="pmid">24182234</idno>
<idno type="doi">10.1186/1471-2164-14-748</idno>
<idno type="pmc">PMC3840631</idno>
<idno type="wicri:Area/Main/Corpus">002421</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002421</idno>
<idno type="wicri:Area/Main/Curation">002421</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002421</idno>
<idno type="wicri:Area/Main/Exploration">002421</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.</title>
<author>
<name sortKey="Bhattacharyya, Dipto" sort="Bhattacharyya, Dipto" uniqKey="Bhattacharyya D" first="Dipto" last="Bhattacharyya">Dipto Bhattacharyya</name>
</author>
<author>
<name sortKey="Sinha, Ragini" sort="Sinha, Ragini" uniqKey="Sinha R" first="Ragini" last="Sinha">Ragini Sinha</name>
</author>
<author>
<name sortKey="Hazra, Saptarshi" sort="Hazra, Saptarshi" uniqKey="Hazra S" first="Saptarshi" last="Hazra">Saptarshi Hazra</name>
</author>
<author>
<name sortKey="Datta, Riddhi" sort="Datta, Riddhi" uniqKey="Datta R" first="Riddhi" last="Datta">Riddhi Datta</name>
</author>
<author>
<name sortKey="Chattopadhyay, Sharmila" sort="Chattopadhyay, Sharmila" uniqKey="Chattopadhyay S" first="Sharmila" last="Chattopadhyay">Sharmila Chattopadhyay</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032, India. sharmila@iicb.res.in.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032</wicri:regionArea>
<wicri:noRegion>Kolkata 700032</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Contig Mapping (MeSH)</term>
<term>Databases, Genetic (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Podophyllotoxin (genetics)</term>
<term>Podophyllotoxin (metabolism)</term>
<term>Podophyllum (chemistry)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Bases de données génétiques (MeSH)</term>
<term>Cartographie de contigs (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Podophyllotoxine (génétique)</term>
<term>Podophyllotoxine (métabolisme)</term>
<term>Podophyllum (composition chimique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Podophyllotoxin</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Podophyllotoxin</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Podophyllum</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Podophyllum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Podophyllotoxine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Podophyllotoxine</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Contig Mapping</term>
<term>Databases, Genetic</term>
<term>Gene Expression Profiling</term>
<term>Gene Library</term>
<term>Genes, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Microsatellite Repeats</term>
<term>Sequence Analysis, DNA</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Banque de gènes</term>
<term>Bases de données génétiques</term>
<term>Cartographie de contigs</term>
<term>Gènes de plante</term>
<term>Répétitions microsatellites</term>
<term>Séquençage nucléotidique à haut débit</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The Himalayan or Indian Mayapple (Podophyllum hexandrum Royle) produces podophyllotoxin, which is used in the production of semisynthetic anticancer drugs. High throughput transcriptome sequences or genomic sequence data from the Indian Mayapple are essential for further understanding of the podophyllotoxin biosynthetic pathway.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>454 pyrosequencing of a P. hexandrum cell culture normalized cDNA library generated 2,667,207 raw reads and 1,503,232 high quality reads, with an average read length of 138 bp. The denovo assembly was performed by Newbler using default and optimized parameters. The optimized parameter generated 40, 380 assembled sequences, comprising 12,940 contigs and 27,440 singlets which resulted in better assembly as compared to default parameters. BLASTX analysis resulted in the annotation of 40,380 contigs/singlet using a cut-off value of ≤ 1E-03. High similarity to Medicago truncatula using optimized parameters and to Populus trichocarpa using default parameters was noted. The Kyoto encyclopedia of genes and genomes (KEGG) analysis using KEGG Automatic Annotation Server (KAAS) combined with domain analysis of the assembled transcripts revealed putative members of secondary metabolism pathways that may be involved in podophyllotoxin biosynthesis. A proposed schematic pathway for phenylpropanoids and podophyllotoxin biosynthesis was generated. Expression profiling was carried out based on fragments per kilobase of exon per million fragments (FPKM). 1036 simple sequence repeats were predicted in the P. hexandrum sequences. Sixty-nine transcripts were mapped to 99 mature and precursor microRNAs from the plant microRNA database. Around 961 transcripts containing transcription factor domains were noted. High performance liquid chromatography analysis showed the peak accumulation of podophyllotoxin in 12-day cell suspension cultures. A comparative qRT-PCR analysis of phenylpropanoid pathway genes identified in the present data was performed to analyze their expression patterns in 12-day cell culture, callus and rhizome.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The present data will help the identification of the potential genes and transcription factors involved in podophyllotoxin biosynthesis in P. hexandrum. The assembled transcripts could serve as potential candidates for marker discovery and conservation, which should form the foundations for future endeavors.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24182234</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.</ArticleTitle>
<Pagination>
<MedlinePgn>748</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-748</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The Himalayan or Indian Mayapple (Podophyllum hexandrum Royle) produces podophyllotoxin, which is used in the production of semisynthetic anticancer drugs. High throughput transcriptome sequences or genomic sequence data from the Indian Mayapple are essential for further understanding of the podophyllotoxin biosynthetic pathway.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">454 pyrosequencing of a P. hexandrum cell culture normalized cDNA library generated 2,667,207 raw reads and 1,503,232 high quality reads, with an average read length of 138 bp. The denovo assembly was performed by Newbler using default and optimized parameters. The optimized parameter generated 40, 380 assembled sequences, comprising 12,940 contigs and 27,440 singlets which resulted in better assembly as compared to default parameters. BLASTX analysis resulted in the annotation of 40,380 contigs/singlet using a cut-off value of ≤ 1E-03. High similarity to Medicago truncatula using optimized parameters and to Populus trichocarpa using default parameters was noted. The Kyoto encyclopedia of genes and genomes (KEGG) analysis using KEGG Automatic Annotation Server (KAAS) combined with domain analysis of the assembled transcripts revealed putative members of secondary metabolism pathways that may be involved in podophyllotoxin biosynthesis. A proposed schematic pathway for phenylpropanoids and podophyllotoxin biosynthesis was generated. Expression profiling was carried out based on fragments per kilobase of exon per million fragments (FPKM). 1036 simple sequence repeats were predicted in the P. hexandrum sequences. Sixty-nine transcripts were mapped to 99 mature and precursor microRNAs from the plant microRNA database. Around 961 transcripts containing transcription factor domains were noted. High performance liquid chromatography analysis showed the peak accumulation of podophyllotoxin in 12-day cell suspension cultures. A comparative qRT-PCR analysis of phenylpropanoid pathway genes identified in the present data was performed to analyze their expression patterns in 12-day cell culture, callus and rhizome.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The present data will help the identification of the potential genes and transcription factors involved in podophyllotoxin biosynthesis in P. hexandrum. The assembled transcripts could serve as potential candidates for marker discovery and conservation, which should form the foundations for future endeavors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bhattacharyya</LastName>
<ForeName>Dipto</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sinha</LastName>
<ForeName>Ragini</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hazra</LastName>
<ForeName>Saptarshi</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Datta</LastName>
<ForeName>Riddhi</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chattopadhyay</LastName>
<ForeName>Sharmila</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR-Indian Institute Chemical Biology, 4 Raja S, C, Mullick Road, Kolkata 700032, India. sharmila@iicb.res.in.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>11</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>L36H50F353</RegistryNumber>
<NameOfSubstance UI="D011034">Podophyllotoxin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020451" MajorTopicYN="N">Contig Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030541" MajorTopicYN="N">Databases, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011034" MajorTopicYN="N">Podophyllotoxin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011035" MajorTopicYN="N">Podophyllum</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24182234</ArticleId>
<ArticleId IdType="pii">1471-2164-14-748</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-748</ArticleId>
<ArticleId IdType="pmc">PMC3840631</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Nat Med. 2012 Jan;66(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21625946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 4;288(1):466-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23161544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jan 17;275(5298):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(8):e70778</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Nov;276(5):436-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Nov;9(7):382-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24227060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Mol Diagn. 2011 Apr;11(3):333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21463242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):1083-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Feb;9(2):102-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18197166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16785429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Nov 19;344(2):419-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15522295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):439-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21063888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18558001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Sep;61(2):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20152027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:342</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21729267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2465-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(3):425-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta Med. 2007 Apr;73(4):388-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17394102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytotechnology. 2000 Oct;34(1-2):17-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19003377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteome Sci. 2012 May 23;10(1):34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22621772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2003 Jan;60(5):541-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12536253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Mar 15;27(6):863-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21278185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2004 May 28;35(3):441-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2003 Jul 21;1(14):2474-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12956064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rheumatology (Oxford). 2000 Mar;39(3):316-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10788542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Oct;15(10):1275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9787434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Sep 15;437(7057):376-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16056220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Dec;214(2):288-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23617716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jun 5;266(16):10210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2037574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 1991 Jan 1;51(1):5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1988106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Mar;55(2):135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11330705</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bhattacharyya, Dipto" sort="Bhattacharyya, Dipto" uniqKey="Bhattacharyya D" first="Dipto" last="Bhattacharyya">Dipto Bhattacharyya</name>
<name sortKey="Datta, Riddhi" sort="Datta, Riddhi" uniqKey="Datta R" first="Riddhi" last="Datta">Riddhi Datta</name>
<name sortKey="Hazra, Saptarshi" sort="Hazra, Saptarshi" uniqKey="Hazra S" first="Saptarshi" last="Hazra">Saptarshi Hazra</name>
<name sortKey="Sinha, Ragini" sort="Sinha, Ragini" uniqKey="Sinha R" first="Ragini" last="Sinha">Ragini Sinha</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="Chattopadhyay, Sharmila" sort="Chattopadhyay, Sharmila" uniqKey="Chattopadhyay S" first="Sharmila" last="Chattopadhyay">Sharmila Chattopadhyay</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002743 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002743 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24182234
   |texte=   De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24182234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020